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Abstract. We study analytically the logarithmic corrections to the critical exponents of the
critical behaviour of correlation length, susceptibility and specific heat for the temperature and the
finite-size scaling behaviour, for a genericφ3 theory at its upper critical dimension (six). We have
also computed the leading correction to scaling as a function of the lattice size. We distinguish
the obtained formulae to the following special cases: percolation, Lee–Yang singularities and
m-component spin glasses. We have compared our results for the Ising spin glass case with
numerical simulations finding a very good agreement. Finally, and using the results obtained
for the Lee–Yang singularities in six dimensions, we have computed the logarithmic corrections
to the singular part of the free energy for lattice animals in eight dimensions.

1. Introduction

One of the techniques commonly used in the study of statistical systems is to perform
numerical simulations focusing on finite size effects. The main tool of this approach is the
knowledge of how some observables diverge in the critical region as a function of the size
of the system instead of the usual formulae that express these divergences as a function of
the reduced temperature (or in reduced probability in the case of percolation) or magnetic
field. Moreover it is possible to measure these finite size effects in experiments.

For statistical systems below their upper critical dimensions there is an extensive
literature on this subject [1].

The main goal of this work is to obtain the functional form of the divergences, as
functions of the reduced temperature as well as the lattice size. We focus on observables
commonly measured in numerical simulations at the upper critical dimension, for a wide
class of systems such as the vector spin glasses [2], percolation [3] and Lee–Yang (LY)
[4, 34] singularities. A classical feature of the upper critical dimension is that the critical
behaviour (which is described by the critical exponents) is modified by logarithms. The
logarithmic corrections to the critical behaviour of the susceptibility (spin glasses (in reduced
temperature) and percolation (in probability)) and correlation length (for percolation, in
probability) were computed in [21] (percolation) and [23] (spin glasses). We will use these
previous results as a check of our calculation.

Moreover, and using the mapping proposed by Parisi and Sourlas [33] between the
actions which describe the LY singularities for the Ising model ind dimensions and the
lattice animals ind+2 dimensions, we have been able to compute the logarithmic correction

† E-mail address: ruiz@lattice.fis.ucm.es
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to the singular part of the free energy for lattice animals [3, 35] at its upper critical dimension
(eight). To check the mapping (a further check) we have compared our result for the LY
singularities with that of [31] where the logarithmic correction to the free energy directly
for lattice animals was originally computed and where with [32] it was checked using series
expansions.

The understanding of these logarithms has very important physical applications. For
instance, theφ4 theory in four dimensions (that we denote asφ4

4) is trivial (the theory that
we obtain when the cut-off is sent to infinity is a free, non-interacting, theory) because the
logarithmic corrections produce a vanishing renormalized coupling constant†.

Another example where the knowledge of the logarithmic factors is very important
is the study of the uniaxial system with strong dipolar forces. In this system the upper
critical dimension is just three and thereby, the theoretical predictions for the logarithmic
corrections have been checked experimentally, the agreement being very good [9].

In this paper we mainly focus on the study of the logarithms in the field theory
description of spin glasses, aφ3 theory‡. The genericφ3 theory (i.e. the coupling is a
generic tensorλijk) also describes a large set of interesting statistical systems. We can
cite, for instance, theq-states Potts model, percolation and LY singularities (described by
one-componentφ3 theory with a purely imaginary coupling [34]).

The study of spin glasses in finite dimensions is another interesting current research
issue [5]. It is very important to understand if the strange and interesting properties of
the Parisi solution (which is believed to be exact in infinite dimensions) apply in finite
dimensions [5]. In particular, the existence of a large number (infinite) of pure states which
organize in an ultrametric fashion is an open problem in the current spin-glass research.

There exist two analytical approaches that try to answer these questions. The first
one is the droplet model [14, 15] that predicts that the spin-glass phase is composed by
one pure state (and its inverse by flipping all spins). The underlying approximation is the
Migdal–Kadanoff one that is an approximate real space renormalization group. The Migdal–
Kadanoff technique is known to give exact answers in one dimension and also that it lacks
of predictive power when the dimensionality grows. For instance, the Migdal–Kadanoff
approach is unable to predict the mean-field exponents of the four-dimensional (ordered)
Ising model.

The second method is based on the mean-field approximation. This approach is the
classical one that has worked fine in the ordered Ising model. First one solves the model
in infinite dimensions, then it is possible to show that the critical properties of the system
remain unchanged up to the so-called upper critical dimension (where the critical laws are
modified by logarithms). Below the upper critical dimension the thermal fluctuations change
the critical behaviour, which can be analysed using renormalization group techniques. This
approach predicted that the upper critical dimension for spin glasses is six.

Our main goal is to calculate the logarithmic corrections that predicts the last approach
(i.e. continuous formulation of the problem plus renormalization group) in six dimensions
for the spin glass (its upper critical dimension) and to compare them with the logarithms
found by Wang and Young [26] simulating the six-dimensional spin glass.

Wang and Young performed extensive numerical simulations [26] in order to check
whether six was really the upper critical dimension of the theory [17]. They found the

† At the critical point, the renormalized constant,gR = (L/ξ)dB (whereξ is the correlation length,L is the lattice
size,d is the dimension andB is the Binder cumulant), of the four-dimensional Ising model drops following a
law: gR ∝ 1/ logL [16].
‡ This theoretical description only holds in the paramagnetic phase. To study the spin-glass phase we need to
consider aφ4 term that induces the breaking of the replica symmetry in infinite dimensions [5].
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mean-field critical exponents (γ = 1 andν = 1
2) but they also found logarithmic corrections,

for example, looking at the finite size effects on the nonlinear susceptibility. Obviously to
close this still open problem (i.e. whether six is really the upper critical dimension) it is
mandatory to known whether the logarithmic corrections found by Wang and Young are
those predicted by the theory.

Another point of interest is to check that at least whenε = 0 the approach has a
predictive power. The convergence of theε-expansion is really poor for theφ3 theory
(see [27] for an example of this poor convergence in percolation). In particular for a one-
component spin glass it is impossible to re-sum (in the Borel sense) the series for the critical
exponents because all the known terms of the series has the same sign. This is why the
field theory (FT) approach has not had a great success. But in this note we show that the
underlying approach is indeed right: it predicts the right logarithmic corrections that has
been found with the computer.

We calculate analytically the logarithmic corrections, and we compare them with those
seen by Wang and Young, finding a very good agreement.

The calculation of the logarithmic corrections (for the correlation length, the nonlinear
susceptibility and the specific heat) has been done using two different analytical starting
points.

(1) The renormalization group recursion formulae, found by Harriset al [20] in the
framework of the Wilson renormalization group [6]. In this case we have obtained the
logarithmic corrections for them-component spin glass.

(2) The results of de Alcantaraet al [13, 18], obtained using a FT approach [7]. In this
case the coefficients, tensor, of theφ3 term in the actions are completely general and so we
can distinguish our final formula to the following cases: percolation, LY singularities and
m-component spin glass (in this case using the results of [19])†.
Of course, at the end we will get two predictions (but not fully independent) for the
logarithmic corrections for the spin-glass case, that agree between them: thus we have
checked that the final formulae are right (for the spin glass at least). Moreover we
have extended the computation to two other systems namely the percolation and the LY
singularities.

Another check of our calculation was done by comparing the logarithmic correction of
the mean cluster size (a susceptibility) and the logarithm of the correlation length (inp−pc)
that we have found in percolation with the results of [21], where they were computed using
a FT approach, the agreement being perfect. Moreover we have compared the logarithmic
corrections with the critical behaviour of the nonlinear susceptibility for the six-dimensional
spin glass with the results of [23] obtaining, again, the same formula for the nonlinear
susceptibility.

We remark that we have extended the computation of the logarithmic corrections for
percolation and spin glasses to another set of observables and, what is the main issue of the
paper, we have computed the cited correction as a function of lattice size. The study of the
six-dimensional percolation and the six-dimensional Ising spin glass using series expansions
can be seen in [22, 24] respectively.

The plan of the paper is the following. In the next section we write down the analytical
set-up that we need in the rest of the paper: the renormalization group recursions of Harris
et al, the FT results of de Alcantaraet al and some useful mean-field results. In sections 3
and 4 we deduce using the Wilson renormalization group (WRG) the logarithmic scaling

† Obviously in these works [13, 18, 12] there is information about the Potts model, but in six dimensions the
Potts Model (with more than two states) shows a first-order phase transition.
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correction as a function of temperature and lattice size respectively for them-component
Ising spin glass. In section 5 we generalize the previous results to percolation and LY
singularities (in temperature and lattice size for aφ3 theory with imaginary coupling) using
the mapping between the results of FT and WRG checking that for the Ising spin glass
we recover the results of sections 3 and 4. In section 6 we have computed the singular
part of the free energy for aφ3 theory with imaginary coupling just at criticality and in the
presence of a magnetic field (LY singularities [34]) and we have compared this result with
that of lattice animals in eight dimensions (in this case as a function of the fugacity, that
plays the role of the magnetic field in LY singularities) obtaining the same result, a further
test that the mapping (a perturbative mapping) suggested by Parisi and Sourlas [33] works
even in the presence of logarithms. Finally in section 7 we present the conclusions.

2. Analytical set-up

In this section we will write the recursion formulae for them-component spin glass found
by Harris et al [20] using renormalization group̀a la Wilson and the Field Theoretical
renormalization group formulae obtained by de Alcantaraet al [13, 18].

Moreover we will write down some useful formulae in the mean-field framework.

2.1. Wilson renormalization group (WRG) equations

One can obtain with the replica trick and assuming that the replica symmetry has not been
broken, the following starting action for them-component spin glass

S =
∫

ddx [ 1
2(∂iφ)

2+ 1
4mrφ

2− w(n− 2)φ3] (1)

wheren is the number of replicas.
Harris et al [20] found in a renormalization group calculatioǹa la Wilson [6] the

following recursion relations (b is the scaling factor) for the action (1)

r ′ = b2−γ (r − 36(n− 2)mw2[A(0)− 2K6r] log b)

w′ = bε/2−3γ /2(w + 36[(n− 3)m+ 1]w3K6 logb)
(2)

with γ = γ (w) = 12(n− 2)mw2K6, andε = 6− d. A(0) andK6 are constants.
In the spin-glass case we assume we take the replica trick limit (n→ 0) and the number

of dimensions to be six (ε = 0).
We can write equations (2) in a differential form, by performing a differential dilatation,

obtaining

dr

d logb
= (2− 120K6mw

2)r + 72mw2A(0)

dw

d logb
= −36(2m− 1)K6w

3.

(3)

We denoteβW(w) ≡ dw/d logb.
Defining t ≡ r + 36A(0)mw2 we recast the first equation of (3) in the standard form

dt

d logb
= (2− 120K6mw

2)t. (4)
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The solutions of the WRG equations (equations (3) are

log
t (b)

t0
= 2 logb − 5m

3(2m− 1)
log(1+ 72w2(1)K6(2m− 1) logb) (5)

w2(b) = w2(1)

1+ 72w2(1)K6(2m− 1) logb
(6)

wheret0 ≡ t (b = 1). We are interested in the asymptotic behaviour that reads

t (b) ∼ t0b2 (logb)−5m/(3(2m−1)) (7)

w(b) ∼ 1√
72(2m− 1)K6

(logb)−1/2. (8)

In order to link the previous formulae with the FT approach we recall

γ (w) = −24mw2K6 (9)

and defineγ as

dt

d logb
= t (2+ γ (w)) (10)

obtaining

γ = −120K6mw
2. (11)

Finally we can write, in this approach, the expression of the critical exponents as a
function of η(w) andγ (w) at the fixed pointw∗ (whereβW(w

∗) = 0)

ν = 1

2+ γ (w∗)
η = γ (w∗).

(12)

2.2. FT formulae

Taking the limit,ε → 0 in the formulae of [13, 18] it is possible to write in the notation of
Amit’s book [7]†

β(w) = ( 1
4α − β)w3

γφ(w) = 1
6αw

2

γ φ2(w) = −αw2

γφ2 ≡ γ φ2 + γφ = − 5
6αw

2.

(13)

The values forα andβ for different models are written in table 1. We have taken the
α andβ values from references [13, 18] (percolation and LY singularities) and [19] (spin
glasses).

Using the spin glass values forα andβ it is possible to link the WRG formulae and
the FT ones. TakingK6 = 1

36 we found thatβW → −β, γφ → γ and γ → −γφ2. This
mapping can be checked with the formulae for the critical exponents‡.

† We have recast all the formulae of these [13, 18] to the notation of Amit’s book [7]. Forβ(w) and γφ(w)
there are no changes. The only difference is onγ φ2. The rule is: γ φ2 = −γφ2(REFERENCES). Here for

γφ2(REFERENCES) we mean the value ofγφ2 found in [13, 18].
‡ The critical exponents in FT are [7]:η = γφ(w∗) andν = 1/(2− γφ2(w∗)).
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Table 1. Values ofα and β for percolation (PERC),m-component vector spin glass (m-SG)
and LY singularities (LY-S).

PERC m-SG LY-S

α −1 −4m −1
β −2 1− 3m −1

Finally, it is possible to write a Callan–Symanzik like formula for the inverse of the
susceptibility (see, for instance, [7])[

κ
∂

∂κ
+ β(u) ∂

∂u
− η(u)− θ(u) ∂

∂t

]
χ−1
R (t, u, κ) = 0 (14)

where θ(u) ≡ −(γ φ2(u) + γφ(u)); κ is the momentum scale,u is the dimensionless
renormalized coupling andt is the renormalized reduced temperature.

2.3. Mean Field

One subtle point in the present calculation is the presence of irrelevant dangerous variables.
To understand when and how they appear we need to analyse the theory in the mean-field
framework.

The free energy is

F(r0, w0) = r0

2
M2+ w0

3!
M3.

If r0 > 0 the only solution that minimizes the free energy isM = 0. But if r0 < 0 the
solution isM = 2|r0|/w0, and the free energy at this minimum is

Fmin = −2

3

|r0|3
w2

0

.

The specific heat is the second derivative ofFmin with respectr0:

C ∝ |r0|
w2

0

(15)

i.e. α = −1, andw0 is a dangerous variable†. w0 is dangerous because the renormalization
group prediction is thatw0 → 0 for larger blocking and it appears in the denominator in
the free energy expression.

It is easy to obtain that

χ−1 ∝ r0 (16)

i.e. γ = 1 and thereby for this observable we find that it does not depend onw0.
Finally we remark that in the mean-field approximation we haveχ(r0) ∝ ξ(r0)2: i.e.

ν = 1
2.

3. Logarithmic corrections in temperature (WRG) for spin glasses

The starting point is the usual formula for the propagator at momentumk:

G(k, r0, w0,3) = b2ζ(b)G(bk, r(b), w(b),3)

† Mean field also predicts that the specific heat vanishes in the whole paramagnetic phase.
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whereζ(b) is defined as

d logζ(b)

d logb
≡ −γ (w(b)) (17)

γ (w) was defined in equation (9) and3 is the cut-off (see [8] for more details). Solving
equation (17) we obtain

ζ(b) ' (logb)m/(3(2m−1)).

The susceptibility is nothing but the propagator at zero momentum, and so

χ(r0, w0,3) = b2ζ(b)χ(r(b), w(b),3). (18)

An equivalent approach is to start from the following formula for the singular part of
the free energy ([11])

fsing(r0, w0, h0) = b−6fsing(r(b), w(b), h(b))

whereh(b) is the re-scaled magnetic field that satisfies the following recursion formula

h(b) = bdhh0

with dh = (d − γ (w))/2+ 1.
The susceptibility reads

χ ∝ ∂2fsing

∂h2
0

∣∣∣∣
h0=0

obtaining again equation (18).
Taking, as usual, ab∗-value such thatt (b∗) = 1, i.e.

b∗ ∝ t−1/2
0 (log t0)

5m/(6(2m−1))

we obtain

χ ∝ t−1
0 (log t0)

2m/(2m−1). (19)

The correlation length verifies

ξ(r0, w0,3) = bξ(r(b), w(b),3) (20)

and therefore

ξ ∝ b∗ = t−1/2
0 (log t0)

5m/(6(2m−1)). (21)

We remark that the remaining factors in the above deduction (i.e.ξ(1, w(b),3)
and χ(1, w(b),3)) do not diverge (see equation (16)): they are the correlation and
the susceptibility far away of the critical point; and so computed in the mean-field
approximation. We have also found above that in the mean-field calculationξ and χ
do not depend onw.

We can finally write down the formulae for the Ising spin glass (m = 1):

χ ∝ t−1
0 (log t0)

2

ξ ∝ t−1/2
0 (log t0)

5/6.
(22)

At this point, we can compare with the analytical result of Fisch and Harris [23] where
it was foundt−1

0 (log t0)2, and so we use their result for the susceptibility as check of our
calculation.

In general the susceptibility verifiesχ = ξ2−η. In theφ4 theory, in four dimensions,φ4
4,

it is clear thatη = 0 andχ = ξ2, while in φ3 in six dimensions (which we denote asφ3
6),
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we have again thatη = 0 but with induced logarithmic corrections and soχ 6= ξ2. This
fact is related with the fact that inφ4

4, ζ = constant, while in theφ3
6 this does not hold.

For the specific heat we use again the expression the singular part of the free energy
(equation (3)). The singular part of the specific heat is

C ∝ d2fsing

dt20

∣∣∣∣
h0=0

.

We choose again the sameb∗ as above and we can finally write

C ∝ t0(log t0)
− 3m+1

2m−1 (23)

where we have used that in the mean-field approximation the specific heat behaves like
C ∝ 1/w(b)2 (see equation (15)). In particular, fixingm = 1, one gets

C ∝ t0(log t0)
−4. (24)

4. Finite size scaling formulae with logarithmic corrections (WRG) for spin glasses

The scaling of the singular part of the free energy in the presence of a magnetic field,h0,
is (in six dimensions) [11]

fsing

(
r0, w0, h0,

1

L

)
= b−6fsing

(
r(b), w(b), h(b),

b

L

)
(25)

where we have introduced a new coupling, the system sizeL, which scales trivially with a
renormalization group transformation (1/L→ b/L). As usually the magnetic field verifies
[8]:

d logh(b)

d logb
= d

2
+ 1− γ (w)

2
. (26)

In the asymptotic regime, the solution of (26) is

h(b) = h0b
4(logb)

m
6(2m−1) .

Performing a renormalization group transformation withb = L, we keep just one degree
of freedom (see [28] for more details). The free energy of this system reads

f (r ′, w′, h′, L = 1) ≡ log
∫

dφ exp

{
−
[
r ′

4
φ2− h′φ − (n− 2)w′φ3

]}
.

Using the standard approach [28] we re-scale theφ variable by means ofφ′ = w′1/3φ. The
free energy can be written as

f (r ′, w′, h′, L = 1) = f̂
(

r ′

w′2/3
,
h′

w′1/3

)
(27)

obtaining finally

fsing

(
r0, w0, h0,

1

L

)
= L−6f̂

(
r(L)

w(L)2/3
,
h(L)

w(L)1/3

)
. (28)

This formula also holds for a genericφ3.
We remark thatw is a dangerous(marginally) irrelevant variable [29, 30] and we need

to do with care all the analytical steps (it is not correct to substitutew for its asymptotically
value,w = 0, because the free energy depends on inverse powers ofw).

To compute the thermodynamical quantities in the critical region one just need to take
the appropriate derivatives offsing. In order to compute the logarithmic corrections it will
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prove useful to take into account equations (6) and (25), and the following Taylor expansion
(which depends onr(L) = t (L)− 36A(0)mw(L)2 and thatt0 = 0 implies t (L) = 0)

∂2
i f̂ (r(L)/w(L)

2/3, 0)|t0=0 = ∂2
i f̂ (−36A(0)mw(L)4/3, 0)

= ∂2
i f̂ (0, 0)+O(w(L)4/3)

(29)

where∂i is the partial derivative with respect to theith argument.
The equation (29) gives us the leading correction to the scaling: it is just the term

O(w(L)4/3) that modifies the scaling behaviour given by∂2
i f̂ (0, 0). In am-component spin

glass we should expect correction to scaling proportional to 1/(logL)2/3.
As we are interested in the behaviour with the lattice size just at the infinite volume

critical temperature (t0 = 0), the susceptibility can be written as

χ ∝ ∂2fsing

∂h2
0

∣∣∣∣
h0=t0=0

= L−6

(
∂h(L)

∂h0

)2
∂2

∂h(L)2
f̂ (r(L)/w(L)2/3, h(L)/w(L)1/3)

∣∣∣∣
h0=t0=0

∝ L2(logL)
3m−1

3(2m−1)

[
1+ A

(logL)2/3

]
(30)

whereA is a constant.
At this point we can compare our prediction for the logarithmic correction for one-

component spin glass

χ ∝ L2(logL)
2
3 (31)

with which was found in numerical simulations by Wang and Young [26]:

χ ∝ L2(logL)0.64.

The agreement is very good.
The specific heat can be computed analogously

C ∝ ∂2fsing

∂t20

∣∣∣∣
h0=t0=0

= L−6

(
∂r(L)

∂t0

)2
∂2

∂r2
f̂ (r(L)/w(L)2/3, h(L)/w(L)1/3)

∣∣∣∣
h0=t0=0

∝ L−2(logL)−
2(3m+1)
3(2m−1) . (32)

At zero magnetic field, the correlation length scales as

ξ(r0, w0, 1/L)|t0=0 = Lξ(r(L),w(L),1)|t0=0 (33)

where ξ(r(L),w(L),1) must be evaluated with the free energy (27). Consequently, the
mass squared term is

(ξ(r, w,1)|t0=0)
−2 = r(L)

w(L)2/3
|t0=0 ∝ w(L)4/3

and so

ξ(r0, u0, 1/L) ∝ Lw(L)−2/3 ∝ L(logL)
1
3 . (34)

The independence of the logarithmic corrections of the correlation length on the number of
components for spin glasses is similar to theφ4

4 case, where no dependences on the number
of components was found in the exponent of the logarithmic corrections [10].

Finally we can also compute the shift of the apparent critical temperature. It can be
defined as the temperature where the susceptibility (or specific heat) measured in a finite
volume shows a maximum. Using the formula (30) for the susceptibility without imposing
t0 = 0 we obtain

χ ∝ L2(logL)
2m

3(2m−1) ∂2
2 f̂ (r(L)/w(L)

2/3, 0).
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The maximum ofχ as a function ofL and t is not just att0 = 0, but it is fixed by the
condition

r(L)/w(L)2/3 = t (L)− 36A(0)mw(L)2

w(L)2/3
= xmax

i.e. the function∂2
2 f̂ (x, 0) has a maximum atx = xmax .

As t ∝ Tc(∞)− Tc(L), it follows that

Tc(∞)− Tc(L) ∝ L−2(logL)
3m+1

3(2m−1) . (35)

5. Percolation and LY singularities formulae

Following the procedure used in the two previous sections we can write general formulae,
not just for the spin-glass case as we have done in the previous part of the paper. Thus, by
using the mapping between the WRG formulae (βW(w), γ (w) andγ (w)) and the FT ones
(β(w), γφ(w) andγφ2(w)) we can obtain the formulae for percolation and LY singularities.

The starting point are the following general formulae
d logh

d logb
= d+ 2

2
− γ (ω)

2
dw

d logb
= βW(w)

dt

d logb
= (2+ γ (ω))t

(36)

and so ∫ w(b)

w0

dw

βW(w)
= logb

h(b) = h0b
(d+2)/2 exp

[
−1

2

∫ w(b)

w0

dw
γ (w)

βW(w)

]
t (b) = t0b2 exp

[∫ w(b)

w0

dw
γ (w)

βW(w)

] (37)

wheret0 ≡ t (b = 1), h0 ≡ h(b = 1) andw0 ≡ w(b = 1).
We rewrite the general formula for the singular part of the free energy

fsing(r0, w0, h0) = b−dfsing(r(b), w(b), h(b)).

We defineb∗ such thatt (b∗) = 1, and sob∗ is a function oft0.
Taking two derivatives with respect to the magnetic field on the singular part of the free

energy we obtain the formula for the susceptibility†

χ ∝ (b∗)2 exp

[
−
∫ w(b∗)

w0

dw
γ (w)

βW(w)

]
. (38)

This formula is valid in any dimension and theory.
The specific heat is‡

C ∝ (b∗)4−d 1

w2(b∗)
exp

[
2
∫ w(b∗)

w0

dw
γ (w)

βW(w)

]
. (39)

† In the case of percolation we identify the susceptibility with the mean cluster size [3].
‡ We identify, for percolation, the specific heat with the second derivative of the singular part of the total number
of clusters,M0, with respect to the dilution [3]. In the percolation case the temperature is identified with the
probabilityp, and so the reduced temperature meansp − pc.
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This formula is valid in any dimension and only for aφ3 theory (we have used that in a
φ3 theory the specific heat far from the critical point behaves as 1/w2; in a φ4 theory we
should change the factor 1/w2 to 1/w).

Finally the correlation length is

ξ ∝ b∗. (40)

The finite size scaling formulae are

χ ∝ L2 1

w(L)2/3
exp

[
−
∫ w(L)

w0

dw
γ (w)

βW(w)

]
(41)

for the susceptibility. The specific heat is

C ∝ L4−d 1

w(L)4/3
exp

[
2
∫ w(L)

w0

dw
γ (w)

βW(w)

]
(42)

the correlation length is given by

ξ ∝ Lw(L)−2/3 (43)

and the shift of the critical temperature is

Tc(L)− Tc(∞) ∝ L−2w(L)2/3 exp

[
−
∫ w(L)

w0

dw
γ (w)

βW(w)

]
. (44)

The finite size scaling formulae for the specific heat, susceptibility, correlation length
and shift are valid in any dimension but only for aφ3 theory. Ford < 6 we have
limL→∞w(L) = w∗ 6= 0 and we get the standard (i.e. without logs corrections) finite
size scaling formulae.

Using the mapping betweenβW(w), γ (w) and γ (w) and β(w), γφ(w) and γφ2(w) of
section 2.2 we can write:

χ ∝ t−1
0 [log t0]

2α
4β−α (45)

C ∝ t0[log t0]−
6α−4β
4β−α (46)

ξ ∝ t−1/2
0 [log t0]

5α
6(4β−α) . (47)

In table 2 we report the exponent of the logarithm observables for percolation, spin
glasses and LY singularities.

The resultsχ ∝ t−1
0 [log t0]2/7 and ξ ∝ t

−1/2
0 [log t0]5/42 for percolation were found

solving a Callan–Symanzik equation in [21], and therefore we use these results as check of
the above calculation.

As a function of the lattice size we found the following formulae:

χ(L, t0 = 0) ∝ L2[logL]
4β

3(4β−α) (48)

C(L, t0 = 0) ∝ L−2[logL]−
12α−8β
3(4β−α) (49)

ξ(L, t0 = 0) ∝ L[logL]1/3 (50)

1Tc ∝ L−1/2[logL]−
4β−6α

3(4β−α) . (51)

In table 3 we report the exponent of the logarithm (in lattice size) for different models.
Moreover the leading correction to the scaling, for all the models described in this paper (in
general for all the models described by a generalizedφ3), is proportional to 1/(logL)2/3.
Finally, we can re-obtain part of the previous results (in temperature) using standard field
theoretical techniques.
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Table 2. Values of the exponent of the logarithmic correction, in reduced temperature, for the
susceptibility, specific heat and correlation length.

PERC m-SG LY-S

χ 2
7 2m/(2m− 1) 2

3

C 2
7 −(1+ 3m)/(2m− 1) − 2

3

ξ 5
42 5m/(6(2m− 1)) 5

18

Table 3. Values of the exponent of the logarithmic correction, in lattice size, for the
susceptibility, specific heat and correlation length. We also show the logarithm factor for shift
of the apparent critical temperature with the lattice size.

PERC m-SG LY-S

χ 8
21 (3m− 1)/(3(2m− 1)) 4

9

C 4
21 −2(1+ 3m)/(3(2m− 1)) − 4

9

ξ 1
3

1
3

1
3

1T − 2
21 (1+ 3m)/(3(2m− 1)) 2

9

The starting point is the solution of the Callan–Symanzik-like equation for the
susceptibility (see equation (14)). The solution of this equation is [7]

χ−1
R (r0, w) ∝ r0 exp

[
−
∫ r0

1
(η(w(x))+ θ(w(x)))dx

x

]
where

η(w) ≡ γφ(w)

2− γφ2(w)

θ(w) ≡ − γφ2(w)

2− γφ2(w)

andw(x) verifies

dw

d logx
= β(w) ≡ β(w)

2− γφ2(w)

with the initial conditionw(x = 1) = ŵ0.
Using the formulae (13) of the FT approach we find

χ−1
R (r0) ∝ r0(logr0)

2α/(α−4β).

And we find again the same law (see equation (45)).
We can repeat the above calculation forξ−2. In this case, solving the correspondent

Callan–Symanzik equation forξ−2, we arrive to the following formula [7]

ξ−2(r0, w) ∝ r0 exp

[
−
∫ r0

1
θ(w(x))

dx

x

]
.

Being the solution

ξ−1 ∝ r1/2
0 (logr0)

5α/(6α−24β).

Again we have obtained the same result (see equation (47)).
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6. LY singularities and lattice animals

In this section we will compute the singular part of the free energy for aφ3 theory with
imaginary coupling at criticality (which describes the LY singularities [34]) as a function
of the magnetic field (the results of the preceding section for this model were as a function
of the reduced temperature or lattice size—in both cases in the absence of magnetic field).

Once that we have this result we will compare it with the formula found for lattice
animals.

Fisher showed [34] a mapping between the Ising model with magnetic field in the
paramagnetic phase and aφ3 theory with an imaginary coupling at its critical point.
Following the steps described above, the first goal is to compute the mean-field behaviour.
The free energy for aφ3 at its critical point in presence of a magnetic fieldh0 is (see [34]
for more details)

F(r0 = 0, w0, h0) = h0M + w0

3!
M3. (52)

By computing the minimum of the free energy, we can write the free energy at this minimum

Fmin ∝ h
3/2
0

w
1/2
0

. (53)

The next step is to write the renormalization group equation for the singular part of the
free energy at the critical point

fsing(r0 = 0, w0, h0) = b−6fsing(0, w(b), h(b)). (54)

Now, h0 is the relevant parameter and so we chooseb∗ by means the relationh(b∗) = 1,
obtaining (by solving the first and second equations of equations (36))

b∗(h0) ' h−1/4
0 (logh0)

−1/72. (55)

Finally we can write the behaviour of the singular part of the free energy

fsing' (b∗)−6 h(b
∗)3/2

w(b∗)1/2
(56)

where we have used equation (53). Usingh(b∗) = 1, and the behaviour ofw with b we
obtain

fsing' h3/2
0 (logh0)

1/3. (57)

This is the behaviour of the singular part of the free energy of the LY singularities in
six dimensions. This formula defines theσ exponent for the LY singularities by means:
fsing = hσ+1

0 . Obviously we have recovered the mean-field result:σ = 1
2 but modified by

a logarithmic factor.
If the mapping proposed by Parisi and Sourlas holds then the behaviour of the singular

part of the free energy for lattice animals in eight dimension should be given by equation (57)
(changing the magnetic field by the fugacity), but this formula is just the formula computed
by Lubensky and Isaacson for the singular part of the free energy for lattice animals in eight
dimensions [31]. Another test of this formula was done in [32] using series expansions
directly on lattice animals.

The above calculation (57) supports again the correctness of the mapping between lattice
animals ind + 2 dimensions and the LY singularities ind dimensions.
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7. Conclusions

In this paper we have computed the logarithmic corrections for a genericφ3 theory at its
upper critical dimension both in the reduced temperature as well as in the size of the system
at criticality. Moreover we have computed the leading corrections to the scaling and the
shift of the apparent critical temperature.

We have distinguished the formulae to the following cases: percolation,m-component
spin glasses and LY singularities.

We have compared the results for the one-component spin glass with the corrections
found numerically and the agreement between the theory and the simulations is very good.

Therefore we believe that the present computation of the logarithmic corrections for
the one component spin glass and the agreement of these with the numerical simulations
strongly support that six is the upper critical dimension form = 1 spin glasses.

Finally we have tested the (perturbative) mapping between lattice animals in eight
dimensions and LY singularities in six dimensions by computing the free energy in the LY
model.
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